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Abstract
Recently, an effective formulation of gravity which lies in between the Wheeler–
DeWitt approach and classical cosmology was discussed. It was shown
that the Big Bang singularity of FRW cosmologies is avoided in a quite
natural way. Here, we aim to prove that this formulation is able to avoid
the Big Rip singularity too, in contradistinction with Schutz’s formalism as
applied to quantum cosmological perfect fluids. Actually, in using this last
formalism, some authors have argued that such singularity would persist even
after quantization, however, what we carried out, with our formulation as
a guide, proved not to be the case. Also, it will be argued that it is the
implicit regularization of the classical Hamiltonian performed in loop quantum
cosmology, which is needed in loop cosmology in order to build a well-defined
quantum (discrete) theory, which avoids the Big Rip singularity in that theory,
this mechanism being different from other, ordinarily invoked quantum effects.

PACS numbers: 98.80.Jk, 98.80.Qc, 04.60.Ds, 04.50.Kd

1. Introduction

In a recent paper [1], we have developed an effective theory of quantum gravity that avoids
the Big Bang singularity. This modified gravity quantization stems from the Wheeler–DeWitt
equation: Ĥ� = 0 [2], with Ĥ the quantum Hamiltonian. To address the question of a
possible singularity at finite time, we considered an effective formulation given in terms of
the following Schrödinger equation (where, as for time, the cosmic one was chosen), with
additional conditions, namely

ih̄∂t�(t) = Ĥ�(t), �(t∗) = �, 〈Ĥ 〉� = 0, ‖�‖ = 1. (1)
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We have adopted here the same point of view, about the problem of time in quantum cosmology,
as Carroll’s in [3]. More precisely, it has often been argued that time does not exist. Here we
take the contrary perspective, we imagine that time exists and that our universe is described
by a quantum state which evolves following the rules of ordinary time-dependent quantum
mechanics.

It is important to stress that our study concentrates on the scale factor as the only dynamical
factor in a quantum setting. Also, we do not take into consideration that the theory of General
Relativity is very likely altered when gravity becomes strong at singularities (and string theory,
supersymmetry considerations, etc should be taken into account). In this sense, our proposal
may be considered a toy model designed to illustrate, in a controlled and clear way, some
specific issues concerning the important problem of the singularities. Our approach and the
results obtained will then be compared with other existing alternatives.

It is well known that the quantum Hamiltonian Ĥ , obtained with the usual rules of quantum
mechanics, is generically symmetric but not self-adjoint. Von Neumann’s theorem [4, 5] allows
it to be extended (sometimes in infinitely many ways) to a self-adjoint operator. Stone’s
theorem then applies, leading to a solution which is valid for all times t and, consequently, one
can then compute the average of the quantum operator â corresponding to the classical scale
factor a. That is, one calculates the following effective scale factor aeff(t) ≡ 〈�(t)|â�(t)〉,
where �(t) is the solution of the effective Schrödinger equation above. It is not difficult to see
that if �(t) belongs to the domain of the operator â at any time, then the effective scale factor
〈�(t)|â�(t)〉 is always strictly positive, and one can conclude that the Big Bang singularity
is avoided. Physically, the self-adjoint extension of the Hamiltonian operator corresponding
to a FRW cosmology can be visualized assuming that there is an infinite barrier potential at
the point a = 0 and then, when the effective factor scale approaches zero, at some finite time
it suddenly bounces back and starts increasing.

In the present paper, we will apply this effective formulation to the case of a barotropic
fluid where we can clearly see what the physical meaning of the self-adjoint extension of the
symmetric operator actually is. By performing a canonical transformation and by applying
Weyl’s limit point-limit circle criterion, we will show how our effective formulation is able to
avoid both the classical Big Bang and the Big Rip singularities.

Finally, we will compare our approach with Schutz’s formalism as applied to quantum
cosmological fluids [6–8] and will show the equivalence of both approaches when one uses
the same time variable—which depends on the fluid’s equation of state. In order to later
express the results in cosmic time, one has to perform an appropriate change of time variable.
However, if it is not carried out accurately, this transformation easily gives rise to some
paradoxical results, as the non-avoidance of the Big Rip singularity after quantization, which,
in our opinion, is not understandable. What this means is that such method should not be
the correct way to quantize cosmological fluids in cosmic time; rather, the right procedure
is to employ the effective formulation in cosmic time. We also establish a comparison with
loop quantum cosmology (LQC) eventually showing that in LQC it is the regularization
of the classical Hamiltonian, performed invoking the quantum (discrete) nature of the
geometry [9–11], what is able to avoid the Big Rip singularity, rather than quantum effects
themselves.

To conclude this introduction, we want to stress that we only study the avoidance of
singularities in quantum FRW models (minisuperspace models), that is, for homogeneous and
isotropic geometries. This study is important because one can obtain analytic results, and it
may help us to understand the problem of singularities in general relativity. However, this
last issue is far from being solved, because we do not have an underlying quantum theory of

2



J. Phys. A: Math. Theor. 42 (2009) 472001 Fast Track Communication

general relativity. For that reason, solvable models, like FRW models of the kind considered
here, can be useful to understand the avoidance of singularities in the more general case.

2. Effective formulation for a barotropic perfect fluid

In this section, we apply our effective formulation to the case of a barotropic perfect fluid with
equation of state p = ωρ. The Lagrangian of the system, in terms of the cosmic time, is

L = γ 2

2
(c2k − ȧ2)a − ρ(a)a3, (2)

where k is the three-dimensional curvature and γ 2 ≡ 3c2

4πG
= 3h̄

4πcl2
p

being G Newton’s constant

and lp the Planck length.
The momentum and Hamiltonian are, respectively, pa = −γ 2ȧa and H = − 1

2γ 2a
p2

a −
γ 2c2

2 ka + ρ(a)a3. Using the conservation equation ρ̇ = −3 ȧ
a
(ρ + p), we have ρ(a) =

ρ0(a/a0)
−3(ω+1). Then, the dynamical equations become

ȧ = − pa

γ 2a
; ṗa = − p2

a

2γ 2a2
+

γ 2c2

2
k + 3ωρ(a)a2, (3)

with the constraint H = 0. The quantization rule

gABpApB −→ −h̄2∇A∇A = − h̄2

√|g|∂A(
√

|g|gAB∂B) (4)

yields the following Hamiltonian operator

Ĥ = h̄2

2γ 2a
∂2
a − γ 2c2

2
ka + ρ(a)a3, (5)

which is symmetric with respect to the usual inner product, 〈�|�〉 = ∫ ∞
0 daa�∗(a)�(a), of

the Hilbert space L2((0,∞), ada).
In order to simplify the quantization, it is advisable to perform the canonical transformation

[12, 13]:

x ≡ 2γ

3
a3/2, p ≡ 1

γ
a−1/2pa, (6)

and then the Hamiltonian is given by

H(x, p) = −p2

2
− γ 2c2

2
k

(
3x

2γ

)2/3

+
9

4γ 2
ρ̃(x)x2, (7)

where now ρ̃(x) = ρ0(x/x0)
−2(ω+1). In these variables the Hamiltonian acquires the simple

form

Ĥ = h̄2

2
∂2
x + V (x), (8)

with V (x) ≡ − γ 2c2

2 k
(

3x
2γ

)2/3
+ 9

4γ 2 ρ̃(x)x2. Again, the inner product is the ordinary one

defined in the space L2((0,∞), dx). Applying Weyl’s limit point-limit circle criterion and
the Frobenious method for second-order differential equations (details are given in [14]), we
can deduce that, when −1 � ω � 1, both deficiency indices are (1, 1); this means that
the different self-adjoint extensions are parameterized by the following boundary condition:
�(0) = r� ′(0) [15]. When ω < −1, both deficiency indices are (2, 2) and the different self-
adjoint extensions are parameterized by a unitary 2×2 matrix, what means that the self-adjoint
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extensions are defined by boundary conditions both at 0 and also at +∞. As a consequence,
the eigenfunctions belong in the Hilbert space and the spectrum is purely discrete [15]. For
the case w > 1, we can only affirm that there exists at most one self-adjoint extension.

Once we have extended our symmetric operator h̄2

2 ∂2
x +V (x) to a self-adjoint one, namely

Ĥ SA, our effective formulation can be written as follows (t being the cosmic time):

ih̄∂t�(t) = h̄2

2
∂2
x�(t) + V (x)�(t), (9)

with the additional conditions �(t0) = �, 〈Ĥ SA〉� = 0, ‖�‖ = 1, and the consistency
condition aeff(t0) = a0. With this effective formulation, we will construct an analytic solution.
This is only possible to do when one considers a dust fluid (ω = 0) in the flat case k = 0. We
use the notation

C ≡ 9

4γ 2
ρ0x

2
0 , K ≡ h̄2

2
, (10)

and we assume that our self-adjoint extension is defined imposing that the wavefunction
vanishes at the origin. Then an analytic solution of the above equation is

�(x, t) = Bx

(
1

δ
− i

t

h̄

)−3/2

e
− x2

4K( 1
δ

−i t
h̄

) e−i Ct
h̄ , (11)

with B and δ real constants. We now impose the normalization of the wavefunction,
‖�(0)‖ = 1, and obtain the relation

B2

√
δ3K3π

2
= 1, (12)

and, finally, we need to impose 〈Ĥ 〉�(0) = 0 to obtain

B2δ3 4

11

√
Kπ

2δ
= C/K. (13)

Solving these two equations, one has δ = 4C
11 and B = (

2.113

43C3K3π

)1/4
. In this way, we have

obtained a solution of our effective formulation given by (11). With this solution it is now
easy to calculate

aeff(t) =
(

3

2γ

)2/3

〈x2/3〉�(t) =
√

2/π25/6(Kδ)1/3

(
3

2γ

)2/3 (
1

δ2
+

t2

h̄2

)1/3


(11/6), (14)

which shows that, for large values of |t |, the behavior is aeff(t) ∝ t2/3, as the classical one. Note

that this also proves that the universe bounces at t = 0, with a scale factor aeff(0) ∝ lp
(mpc2

ρ0a
3
0

)1/3
,

mp being Planck’s mass. To be consistent, we have to identify aeff(0) with a0, this means that

a0 is not a free parameter, it has the following value a0 ∝ √
lp

(mpc2

ρ0

)1/6
, and if one chooses ρ0

of the same order that the Planck density one has a0 ∝ lp.
Another analytic solution can be built, if one considers the extension defined by the

boundary condition � ′(0) = 0. This solution is (see for details [12])

�(x, t) = (8b/π)1/4 e− i
h̄
ρ0a

3
0 t (1 + 2ih̄βt)−1/2 e− βx2

1+2ih̄βt , β ≡ b + iB. (15)

This function is normalized; now imposing 〈Ĥ 〉�(0) = 0, one obtains

h̄2(b2 + B2)

b
= ρ0a

3
0 . (16)
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The average of the operator x̂ is given by

〈x̂〉�(t) = (2πb)−1/2[1 − 4Bh̄t + 4(b2 + B2)h̄2t2]1/2, (17)

what shows that the universe bounces at t = B
2h̄(b2+B2)

.

To be consistent, we have to impose 〈x̂〉�(0) = x0, and one has b = 1
2πx2

0
= 9

8πγ 2a3
0
. Then

for large values of a0 one has B ∼= − 3
2γ h̄

√
ρ0

2π
(we have chosen the negative sign because we

have assumed that the universe expands at t = 0) and, consequently,

〈x̂〉�(t)
∼= x0

[
1 +

6

γ

√
ρ0

2π
t +

9ρ0

2πγ 2
t2

]1/2

. (18)

It should be noted that in the quantum theory we have associated with the classical scale factor
a an operator denoted by â that we call ‘scale factor operator’, in the same way that one
introduces the position operator in no-relativistic quantum mechanics. In quantum mechanics,
the position has no physical meaning; however, when fluctuations can be neglected, e.g. in
the classical limit, one can identify the average of this operator with the classical position of
a particle. This is what happens in our model, when the system is far from the singularity and
the fluctuations can be neglected, one can identifiy the effective scale factor with the classical
one and, then, the effective scale factor satisfies all the classical properties. For example, in
the case k = 0, during the classical regime, the scaling aeff(t0) → Caeff(t0), where C is some
constant, implies aeff(t) → Caeff(t).

To conclude this section, we show how our effective formulation actually solves, both the
classical Big Bang and the Big Rip singularities. The first appears when w > −1, in which
case the classical solution is a(t) = a0(t/t0)

2
3(1+ω) , what shows that the classical solution is only

defined in the interval (0,∞) (a classical Big Bang singularity). However, Stone’s theorem
assures that the solution of our effective problem exists for any time value and, also, that the
effective factor scale (the average of the scale factor operator) will never vanish.

The classical Big Rip singularity appears, on the other hand, when ω < −1. The

classical solution, in the flat case, reads a(t) = a0
(

t−ts
t0−ts

) 2
3(1+ω) , with ts finite. In this situation,

the singularity occurs at time ts, because the factor scale diverges, and then the classical
solution is only defined in the domain (−∞, ts). As above, Stone’s theorem states that the
quantum solution of our effective formulation exists for all time. Moreover, to ensure that
the effective scale factor does not diverge at finite time, we first note that, in the flat case,
when ω < −1, the spectrum is discrete. Then, we may consider the following superposition:
�(x, t) = ∑

j e
i
h̄
λj tαj�j (x), where λj are the eigenvalues and �j(x) are the respective,

normalized eigenfunctions. The normalization of the wave packet yields the condition∑
j |αj |2 = 1. The effective scalar factor is aeff(t) ≡ (

3
2γ

)2/3 ∫ ∞
0 dx|�(x, t)|2x2/3 =(

3
2γ

)2/3 ∑
j,k αjαk e

i
h̄
(λj −λk)t

∫ ∞
0 dx �j (x)�∗

k(x)x2/3. Then, taking into account, in the flat

case, that the behavior of the eigenfunctions at ∞ is |�j(x)| ∼ xω/2 (see, for details, [15]
p. 75), we obtain, for ω < −5/3, the following bound:∫ ∞

0
dx �j (x)�∗

k(x)x2/3 =
∫ x̄

0
dx �j (x)�∗

k(x)x2/3 +
∫ ∞

x̄

dx �j (x)�∗
k(x)x2/3

� x̄2/3 +
∫ ∞

x̄

dx xωx2/3 = x̄2/3 + (−ω − 5/3)−1x̄5/3+ω, (19)

for some conveniently large value x̄. With this bound—always in the flat case—it is easy to
show that, for ω < −5/3, one has aeff(t) � 2(x̄2/3 + (−ω − 5/3)−1x̄5/3+ω), for any t. Now,
when −5/3 � ω < −1 one actually needs to know the explicit form of the wave packet; but
it seems clear that, in this last situation, the effective scalar factor will be bounded too.

5
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3. Comparison with others approaches

In this section, we will compare our approach with Schutz’s formalism as applied to
quantum cosmological fluids. The Hamiltonian in Schutz’s formalism is (we use units
h̄ = c = 16πG = 1) [6–8]

H = − 1

24a
p2

a − 6ka +
pT

a3ω
, (20)

where pT is the canonical momentum associated with matter, and the connection between the
cosmic time t and T is given by dt = a3ω dT . Comparison of (10) with our Hamiltonian yields
pT = ρ0a

3(ω+1)
0 . In this formalism, the Wheeler–DeWitt equation reads (pT → −i∂T )

1

24a
∂2
a2� − 6ka� = i

a3ω
∂T � ←→ i∂T � = a3ω−1

24
∂2
a2� − 6ka3ω+1�. (21)

To obtain the effective formulation in terms of time T, one has to use the Lagrangian

L = 6a3ω

(
k − a′2

a6ω

)
a − ρ(a)a3(ω+1), (22)

where a′ ≡ da
dT

. Then, the Hamiltonian is

H = −a3ω−1

24
p2

a − 6ka3ω+1 + ρ(a)a3(ω+1), (23)

and the effective formulation reads now

i∂T � = a3ω−1

24
∂2
a2� − 6ka3ω+1� + ρ(a)a3(ω+1), (24)

with the additional conditions �(T ∗) = �, 〈Ĥ SA〉� = 0, ‖�‖ = 1. Note that the term
ρ(a)a3(ω+1) is constant; thus, we can perform the change � = �̃ e−iρ0a

3(ω+1)
0 T in (24) to obtain

equation (21), what rigorously shows the equivalence of both quantization methods.
We now study the self-adjoint extensions of the Hamiltonian operator that appears in

equation (21), in the flat case. Once more, using Weyl’s limit circle-limit point criterion and
the Frobenious method, it is not difficult to show that, for ω � 1, the deficiency indices are
(1, 1). This means that, in the first case, the self-adjoint extensions are parameterized by a
boundary condition at 0. One can calculate the eigenfunctions of the Hamiltonian explicitly.
Writing �(a, T ) = eiET φE(a) and choosing for boundary condition at zero, �(0) = 0, we
get (for ω < 1)

�E = √
aJ 1

3(1−ω)

( √
96E

3(1 − ω)
a3(1−ω)/2

)
, for E > 0, (25)

where J denotes the Bessel function of the first kind. An analytic solution is easily found
using the eigenfunctions given in (25) [7, 8]:

�(a, T ) = a
e− a3(1−ω)

4B

(−2B)
4−3ω

3(1−ω)

, (26)

with B ≡ δ − 3
32 i(1 −ω)2T , where δ is a free real parameter which, in our formulation, has to

be chosen in order to satisfy the condition 〈H 〉� = 0. Using this solution, the effective scalar
factor turns out to be

aeff(T ) =



(
5−3ω

3(1−ω)

)



(
4−3ω

3(1−ω)

) (2δ)
1

3(1−ω)

[
9(1 − ω)4

(32δ)2
T 2 + 1

] 1
3(1−ω)

, ∀T ∈ R. (27)

6
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In Schutz’s formalism, to obtain the wave packet as a function of the cosmic time, some
authors perform the time change dt = a3ω

eff (T ) dT [8, 16]. Thus, the wave packet is given by
�(a, T (t)), with the Schrödinger equation in the cosmic time being

i∂t� = 1

a3ω
eff (T (t))

(
a3ω−1

24
∂2
a2� − 6ka3ω+1�

)
. (28)

We shall now show that this change of variable give rise to paradoxical results. For
instance, in the flat case, when one considers a phantom fluid (ω < −1), one has
tBR ≡ ∫ ∞

0 a3ω
eff (s) ds < +∞ [16]. This means that the Schrödinger equation is only defined for

the cosmic time in the interval [−tBR, tBR] and, also, that the effective scalar factor diverges at
cosmic time t = tBR, that is, the Big Rip singularity survives after quantization. However, we
have already seen that the Big Rip singularity is actually avoided in the effective formulation,
what means, from our viewpoint, that the change of variable dt = a3ω

eff (T ) dT may not be
the correct one to perform in order to obtain the Schrödinger equation in cosmic time. The
proposed right procedure would be, namely, to start with the Lagrangian (2), to obtain then
the corresponding classical Hamiltonian and, finally, to apply the standard quantization rules
with the quantum constraint 〈Ĥ SA〉� = 0.

3.1. Big Rip singularity avoidance in loop quantum cosmology

We will now show how loop quantum cosmology is able to avoid the Big Rip singularity.
Consider the canonically conjugate variables V ≡ a3 and β ≡ ιȧ/a, which satisfy
{β, V } = 3ι

γ 2 , where ι denotes the Barbero-Immirzi parameter [17, 18]. Consider also the

holonomies hj (λ) ≡ e−i λβ

2c
σj , where σj are the Pauli matrices and λ is a parameter with

dimensions of length. The general formulas of loop quantum gravity (LQG) can be used
to obtain the following gravitational, regularized Hamiltonian (which is needed in order to
construct a well-defined quantum theory) [11, 19, 20]:

Hgrav,reg ≡ − h̄2c

32π2l4
pι3

V

λ3

∑
i,j,k

εijkT r[hi(λ)hj (λ)h−1
i (λ)h−1

j (λ)hk(λ){h−1
k (λ), V }]

= − γ 2c2

2ι2λ2
V sin2 λβ

c
. (29)

Taking this regularized Hamiltonian as the gravitational part of the full Hamiltonian, this last
one will be given by [17]

Hreg ≡ − γ 2c2

2ι2λ2
V sin2 λβ

c
+ a3ρ, (30)

and the dynamical equation for the scalar factor reads

ȧ = {a,Hreg} = ca

2λι
sin

2λβ

c
. (31)

Imposing the Hamiltonian constraint Hreg = 0, we obtain the following modified Friedmann
equation

ȧ2

a2
= 2ρ

γ 2

(
1 − ρ

ρc

)
, (32)

where ρc ≡ γ 2c2

2λ2ι2
.

Finally, with this modified equation it is now easy to verify that the Big Rip singularity is
avoided, see for instance [21]. What we have just seen in using the LQC paradigm is namely

7
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that, in order to avoid the Big Rip singularity, one only needs to make use of the classical
regularized Hamiltonian (no quantization of the Hamiltonian is necessary, in principle, only
one has to assume the discrete character of the geometry to construct the classical regularized
Hamiltonian). This is somehow different from the effective formulation, where one must
quantize the Hamiltonian in order to avoid the singularities. It is important to realize that,
here, it is the regularization of the classical Hamiltonian which avoids the Big Rip singularity,
rather than the quantum effects due to its quantization. This seems to have been overlooked
in a number of papers, where it is claimed that quantum effects are in fact essential to avoid
the singularity [17, 21, 22]. Note that, in those approximations, one already starts from the
quantum version of the regularized Hamiltonian (a discrete theory) and then, using semi-
classical techniques, coherent state expressions, etc, an effective Hamiltonian is obtained (a
continuous theory)[18, 23–25] which, in fact, is in essence the Hamiltonian (30). This is
perhaps the reason why it was plainly concluded there that quantum effects, provided by LQC,
are actually the ones responsible for avoiding the singularity. We believe that this procedure
can produce some confusion, because it seems that the only way to describe the features of
LQC within a continuous theory is to consider the effective Hamiltonian obtained from the
quantum version of the theory (see for example [26, 27]).

4. Conclusions

We have shown how our effective formulation of gravity, which interpolates in a way between
the Wheeler–DeWitt approach and classical cosmology, is able to avoid both the classical
Big Bang singularity and also the Big Rip singularity. Our formulation, is in essence,
Schrödinger’s equation with the condition that the average of the Hamiltonian operator be
zero. Our formulation is different from the Wheeler–DeWitt equation where one imposes that
the Hamiltonian operator annihilates the wavefunction, and where the arrow of time is yet to be
selected. In our theory, we have assumed that time exists [3], and that it has the same meaning
as in the classical theory, and the relevant quantities are averages of the quantum operators
as, e.g. the average of the scale factor operator—which is by definition strictly positive—and
there appears no Big Bang singularity at finite time. The Big Rip singularity problem is more
involved and, in order to address and solve it one needs to work harder, as was seen in the last
part of section 2 explicitly. It could turn out to be that the problem of time is associated with
the avoidance of singularities. Our results hint toward this direction.

Another way to deal with the classical Big Rip singularity problem is loop quantum
cosmology. We have shown, in this respect, that it is the regularization itself performed on
the classical Hamiltonian what seems to avoid this singularity, rather than the quantum effects
arising after the quantization of the regularized Hamiltonian. In this sense, one can actually
say that the power to avoid the singularities lies in the principles themselves of the LQC
paradigm.
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